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One-dimensional or nearly one-dimensional unstable motions of perfect gas 

are considered. Integrals admitted by the system of equations defining such 

motions are examined. Since the existence of integrals is associated withsome 

law of conservation, i. e. with some divergent form of presentation of equations 

of the input system, it is possible by examining alJ divergent equations of gas- 
dynamics to derive certain new integrals not previously considered. 

1. As the basic system we select the continuity equation, the Euler equation, and the 
equation of energy conservation 

(1.1) 

(1.2) 

where subscripts i and k assume the values 1, 2, 3, and recurrent subscripts indicate 

summation. 

Below we refer to certain equations as being of divergent form, if their variables ap 

pear as derivatives, e. g. Eqs. (1.1) -( 1.3). Equations of divergent form are also called 
laws of conservation. 

Instead of Eq. (1.3) it is possible to use the equation of conservation of entropy of a 
particle ~+u&= 

k 
0, s=$ (1.4) 

We denote by A (S) an arbitrary function of S and by A’ (8) its derivative with 
respect to 5’. We multiply Eqs. (1.1) and (1.4) by A (8) and pA (8) , respectively, 
and add the results. We obtain 

6PA(S) + 
at & @kA (s)) = o (1.5) 

Equation (1.5) is of divergent form and contains an arbitrary function of entropy, 
Let us transform Eqs. (1.1) and (1.2). For convenience we introduce the following 

notation : 
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where subscripts a and fi assume the values 1, 2, 3, 4. With the use of these new vari- 

ables we combine Eqs. (I. 1) and (1.2) and write these as 

+ (Pv,“vp” + &BP) = 0 (1.6) 

We introduce one more subscript y = 1, 2. 3, 4. Multiplying Eq. (1.6) by xyo and 
subtracting from it Eq, (1.6) written with subscripts /3 and y and multiplied by 3,” , 
we obtain 

(pu,“vp” - S&I) = 0 (1.2) 

We transform the first term of Eq. (1.7) to 

~(PXY%&“-L xY:,"~~pp)-pv,"v,"-~:,p 

The second terms is similarly transformed. Taking into consideration the symmetry of 

6,,” (Lo = S+Y~‘), we finally obtain 

+ Ipr$ (X~%prO - %%y”) + (B&.zYO - s;a$) p) = 0 (3.8) 

Taking into account that the left-hand part of (1.8) contains an antisymmetric matrix, 
we conclude that (1.8) generates six divergent form equations. Three of these defined 
by subscripts (a = 2, y = 3), (a = 2, y = 4) and (a = 3, y = 4) are the equa- 

tions of conservation of the vector of the motion moment of rnorn~~rn. The projection 
of one of these on the x3 -axis in scalar form is defined by 

-&IP(“z% - %%)I + -& IP~1c%~1---w4 -t-&PI+ 
(1.9) 

-&- wa (Wl - Xl&) - &PI + & ws (Wl - wdl = 0 

To obtain the remaining three equations it is sufficient to use subscripts (a = 1, y = 

2), (a = 1, p = 3)and(a=1, y = 4). The equation cor~s~nding to the first 

pair of subscripts written in scalar iorm is 

.& [p (zl - tul)] --I- & lpJ1 (x1- w - tPl + (1.10) 

& [pvr (2$ - tv& + -&- IP3 c% - w = 0 

For any arbitrary number. x the number of equations of divergent form reduces to 
Eqs. (I. l)- (l-3), (1.5) and (1.8) ; at certain values of x namely x = 3 for one- 
dimensional unstable flows with plane waves, x = 2 for two-dimensional unstable 
flows and x = 6/s for three-dimensional unstable flows there are two more supplemen- 
tary equations [5, 61. The first of these is obtained’by multiplying Eq. (1.2) by --‘/&c~. 
Eq. (1.3) by t , and adding these 
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The second equation is obtained as a combination of all Eqs. (1.1) - (1.3). By multi- 
plying Eq. (1.1) by ‘/s.z?, Eq. (1.2) by -a$, and Eq. (1.3) by ts and adding these, we 
obtain 

(1.12) + [+ Pxk2 - tp%v, + ta (+ pvka + + p)] $ 
a - azi +- pv@k= - txk (Pvivk + b) + t”& 

2, Let one of the equations tbat define the motion of gas be of the divergent form 

~+&o 
k 

(2.1) 

Let us determine the derivative with respect to time of the integral of quantity F 
taken over the mobile volume V (t). Using (2.1) and the Ostrogradskii-Gauss formula, 
we obtain 

;“Q”“=g 
(N,F - @k) dok (dv = dxidxsdx,) (2.2) 

where the following notation is used: 2 is the surface bounding volume V (t), du is 
an oriented element of surface Z, u is the vector of a normal to surface Z, and N is 
the displacement velocity of element do. 

We pass now to unstable motions. Let the equation which specifies the position r, (t, 
cp, 6) of the shock wave propagating through the initially cold quiescent gas for con- 

siderable times t be of the form 

r$J = (bty (1 + t-8m’ (v+a)Rz + . . .) (2.3) 

where b is a dimensional constant ; n and m are some positive integers ; values of pa- 
rameter v are 1, 2, 3 depending on the dimensionality of the problem, and the quantity 
RB can be either constant or a function of angular variables cp and 6. For the investi- 
gation of perturbations of cylindrically symmetric motions we use the polar system of 
coordinates r, cp , and for spherically symmetric motions, the spherical system of coor- 
dinates r, cp, 6. We denote by v,, and v+ the velocity vector components which are nor- 
mal and tangent to the surface of strong discontinuity,and by N the shock wave propa- 
gation velocity. 

If we denote the state of gas immediately ahead of the wave front by 1 and that be- 
hind it by 2, the Bankine-Hugoniot conditions assume the form 

vna = & N, v,, = 0, pa = 2 ~1, ~a = -&plN" (2.4) 

Let us first consider the case of R, = const = 1. It is possible inthat case to seek 
the solution of problem (2.3) of gas motion behind the shock wave in the form of series 
in decreasing powers of t with coefficients that are functions of the variable h= r/(bt)“. 
Since only the radial component v, of the velocity vector is nonzero, hence 

v, = -$ b” P-l [f (h) + t-2m ’ (“+w fm (h) + * * * ] (2.5) 
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x+l 
P=x-_l p1Ig(h) + t-2m'(v+a)gm(h) + l * *] 

P= -$+- plbantsfn-‘) [h(h) + t-am i(v+2)hm (a) ,- . . . ] 

Substituting expansions (2.5) into the system of Eqs. (1.1) - (1.3) and collecting terms 
of like powers of t, we obtain a system of equations for functions of the first (j, 
g, h) and second (jm, g,,, h,) approximations . First approximation functions 
define self-similar flows whose general method of analysis was formulated by se&v 
Cl] ; the system of ordinary differential equations which defines such flows appears 
in C7] . Second approximation functions were investigated in [4] where the system 
defining these is presented. 

If we pass to the variable h , formula (2.3), which determines the shock frout posttion, 
assumes the form 

ha = 1 + r-smi(*+s) + . . . (2.6) 

Let us take the volume contained between surfaces h = hs and h = const a% the 
mobile volume V (t) . We denote by P the terms in the form of derivatives with re- 
spect to time in any of the divergent form equations (1. l),( 1.3),( 1.5),( 1.11) and (1.12) 
in the general case, and in (1.2) and (1.10) in the case of flows with plane waves (Y = 
1). Then, ~bsti~ting functions (2.5) into (2.2) and collecting terms of like powers of 
t, we obtain - 

sss 
FdV = t@F,(h, ha)+ t*-2m'(V+2)Fa(h, ha)+ l * - (2.7) 

VU) 
where q depends on n, v and the form of F; F, and F,, are one-dimensional integ- 
rals with limits of integration from X to ha, with F, depending on first approximation 
functions and Pa on unction of the first and second appr~i~~~. 

Similar transformations of the right-hand part of (2.2) yield 

where Zr depends on first approximation functions and Zs *on first and second approxi- 
mation functions ; both 2% and 2s independent of derivatives or integrals of related 
functions. 

Selecting F, n and v so as to have q = 0, we immediately obtain a finite relation- 
ship for first approximation functions, since in (2.7) the terms associated with first appro- 
ximation functions vanish after differentiation with respect to time. As the result wehave 

Formula (2.8) satisfies boundary conditions (2.4)‘ since the shock wave (2.6) is taken as 
the boundary of the mobile volume Y (t) ; on the other band, it is not difficult to obtain 
(2.8) in the form of the first integral by substituting for hs some other A,. 

Selecting F from Eqs. (1.1) and (1.3), and determining the corresponding n and ‘v 
from the condition q = 0 I we obtain the integrals of self-similar motions [XJ, namely, 
the integrals of mass and energy that exist only for completely determined n and v. 
The integral generated by Eq, (1.5) (the adiabatic integral [l]) exists for any rr and Y, 
since condition q = 0 can be always satisfied by an appropriate selection of A (S). 
In the case of flows with pLane waves (Y = 1) Eq. (1.2) generates the momentum 

integral [l]. Equations (1.10) and (1.12) are unimportant for the derivation of the first 
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approximation functins, since the cidition q = U becomes in th8t case n = 0. 
Equation (1.9) is applicable to expansions of other forms than (2.5) ; more till be said 
about this subsequently. There remains Eq. (1, 11) for which the condition q = 0 gene- 
rates n = 1 / (Y + 2); on the other hand the divergent equation (1.11) itself holds 
(with the use of v) for x = (v + 2) I v. Introducing the arbitrary constant Cs, we 
write (2.8) in the form of the first integral 

Integral (2,s) is of a fairly simple structure, It consists, as Eq. (L 11) that generates it, 
of two parts, with the first two terms corresponding to the energy integral, and the last 
to the momentum integral [I] mutiplied by h. Integral (2.9) complements the set of 
first integrals of self - similar motions of perfect gas [l], tkthermore, since the number 
of divergent forms is limited to those defied above [S], there are no other first integrals 
determined by laws of conservation. 

Let us consider second apportion functions. We again select F, IL, v and m so 
that q-2m/(v+2)=0 (2.10) 
which yields the final relationship 

%s (h, hs) = 0 (2.11) 

for the second approximation functions. This relationship may be reduced to the form 
of the fiit integral by substituting & for h,. As in the case of Rrst approximation func- 
tions, Eq. (L 5) generates an integral for any m P, 33. The integrals for second appro- 
ximation functions for Eqs. ( 1.1) - (1.3) were considered in [4]. 

Let us first consider Eqs. (1.11) and ( 1.12). Selecting F in conformity with Eq. (1.11). 
we obtain that condition (2. IO) is satisfied for m = {v + 2) [(v + 2) n - 11 f 2. 
We introduce the arbitrary constant Cs and present (2.11) in the form of the first integral 

h (%ff, + f"gTil + hn) -+-[(Vg ++h)fd- (2.12) 

f%m + + f&-j - G h [A (gfm -I- fg,) - 

+(2gff,+pgnr ++%J= $y, x=q 

The structure of integral (2.12) is the same as that of integral (2.9) : the first twoterms 
corresponding to the linearized energy integral, and the last to the linearized momentum 
integral [4] multiplied by J,. 

Equation ( 1.12) of divergent form with condition (2.10) yields formula (2.11) which 
with the use of constant C, may be readily written in the form of the first integral 

(J$)%[hgm - +- (gfm + &n)]- 2 ‘vv; %) h [h(gf,f f&a)-- (2.13) 

e (afgf,,, + fk + t hm)] + h Pfgfm + fdgm $- F*m) - 

+#g + 
~h)fm+f3~~+~fhm]=L 8’4 
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x = (Y + 2) / v, m = n (v + 2)a / 2 

In conformity with the generating equation (1.12) the integral (2.13) consists of linea- 
rized integrals of mass multiplied by ha, of momentum multiplied by A, and of the en- 
ergy integral [4], 

Equations (1.9) and (1.10) can only be used for the derivation of final relationships 
for functions (2.5) in the case of motions with plane waves. Equation ( 1.9) generates 
the momentum integral, and Eq. (1.10). generates for second approximation functions 
and for any x the new integral 

(2.14) 

h (f&l + gfm) - &y wgfm + v%?n + (x - 1) h,)] = c, 
Y=i, m = 3n 

where c, is an arbitrary constant. The first term of the integral corresponds to the line- 
arized integral of mass multiplied by h, and the second to the momentum integral [4]. 

For cylindrically symmetric shock waves (4 3) (Y = 2) it is, also, possible to use Eq. 
(1.10). As was done in [4], we set & = CQS cp for analyzing the equation of momen- 
tum conservation and obtain the following expansion of the unknown functions: 

v, = -$ f3”t”-1 [f(h)+ t-m’sf&)cos(P + * * *] 

77,~ ~b”tn-1-m’2um(h)sin~+ .a. 

P= 
X+l 

x-_l Pl k (V + Km ‘2&n 04 cos cp + - - * I 

P= s plbZnt-) [h(h) + t-vam (A) cos cp + - - -1 

The system of equations which is satisfied by second approximation functions appears 
in [4]. Using the method indicated above and introducing the arbitrary constant Cs, for 
the second approximation functions we obtain 

For spherically symmetric shock waves (2.6) Eq. (1.10) yields in the first approxima- 
tion an integral, if Rs = COS 6 is assumed. Expansion of the unknown functions must 
be written in the form 

v,=~b”t”-‘[f(h)+t”m’Sf,(h)cos6+...] 

& = A& bntn-l-~m ’ 5 u, (h) + . . . 

vg =~bnt”-1-2m’swm(1L)sln8+ . . . 

P= 
X-cl 

~PPlk?(V + t-a”‘5&l(h)COs~+ ***I 

P= s plb2nt2’n-1) [h (h) + t+’ ’ ‘h, (h) cos 6 + . . . ] 
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Introducing the arbitrary constant Cs, we obtain 

*+g,- 2 WA + fg,)] - b (&I + f&X - 2@%) - x+i 
(2.16) 

m = 10n 

The structure of integraIs (2.15) and (2.16) is the same as that of integral (2.14), with 
the first term corresponding to the linearized integral of mass and the second to the line- 
arized momentum integral [4], 

Equation (1.9) of the divergent form yields for v = 2 and v = 3 the integral which 
defines flows with conservation of the moment of momentum of flow ; such flows cannot 
be defined by expansions (2.3) for the shock wave propagating in a quiescent gas, and 
are not considered here. 

The author thanks 0. S. Ryzhov for advice and interest in this work. 
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Flows of a chemically active gas mixture are considered in a small region ofa 
Lava1 nozzle, where their mode changes from subsonic to supersonic (the frozen 
speed of sound is considered) are analyzed. Continuous solutions and solutions 
with shock waves are derived. Conditions of shock-free flows are obtained. 


